The IUCN Green List of Species

An Optimistic and Ambitious New Vision for Conservation

H. Reşit Akçakaya

Department of Ecology and Evolution Stony Brook University, NY, USA

Red List Committee
Standards and Petitions Committee
Green List Task Force

References

Akçakaya HR, et al. 2018. Quantifying species recovery and conservation success to develop an IUCN Green List of Species. Conservation Biology 32, 1128-1138 https://doi.org/10.1111/cobi.13112

Sanderson EW. 2019. A full and authentic reckoning of species' ranges for conservation: response to Akçakaya et al. 2018. Conservation Biology 33, 1208-1210 https://doi.org/10.1111/cobi.13399

Stephenson PJ, et al. 2019. **Defining indigenous species** range to account for geographic and taxonomic variation in the history of human impacts.

Conservation Biology 33, 1211–1213.

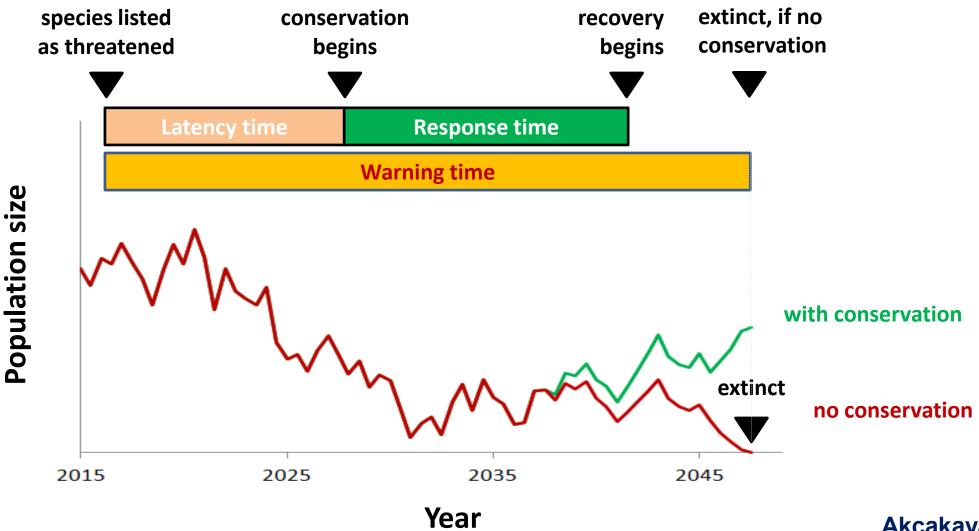
https://doi.org/10.1111/cobi.13400

Grace M, et al. 2019. **Using historical and paleoecological data to inform ambitious species recovery targets**. *Philosophical Transactions B*. https://doi.org/10.1098/rstb.2019-0297

IUCN Standards and Petitions Committee. 2019.

<u>Guidelines for Using the IUCN Red List Categories and Criteria</u>. Version 14.

Akçakaya HR, et al. **Assessing ecological function in the** context of species recovery (in review)


Updates

https://www.researchgate.net/project/
IUCN-Green-List-of-Species-measuringconservation-success

Preventing extinctions

Threatened

Extinction Risk

IUCN Red List Criteria

Population reduction

Restricted geographic range

Small population size & decline

Very small or restricted population

Quantitative analysis

IUCN Red List Categories

Extinct

Extinct in the Wild

Critically endangered

Endangered

Vulnerable

Near-threatened

Least concern

Data deficient

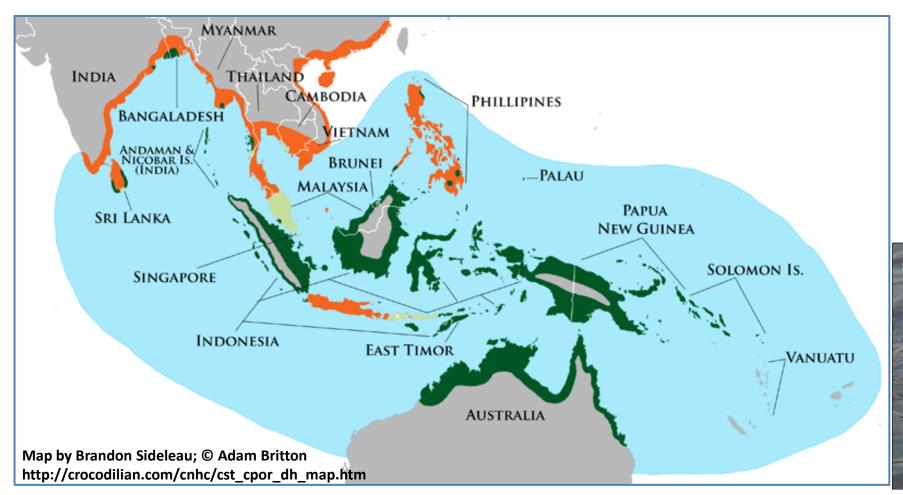
Quantitative thresholds

At <u>lower</u> risk of extinction, BUT only because of ongoing conservation

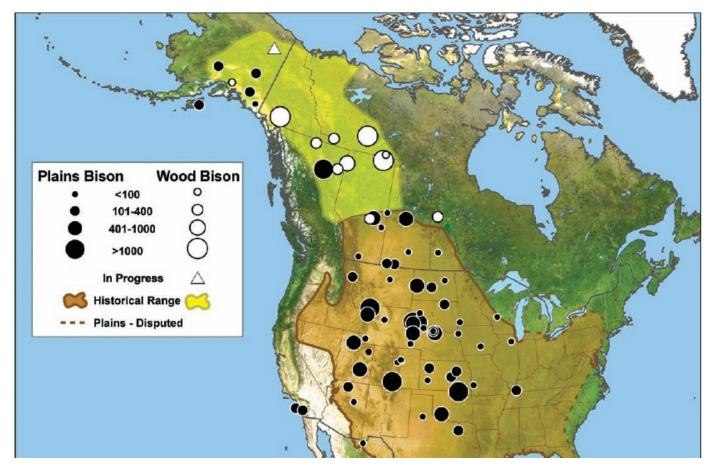
Earth

Weather

- Improvement in status controversial
- Extinction risk does not capture dependence on conservation

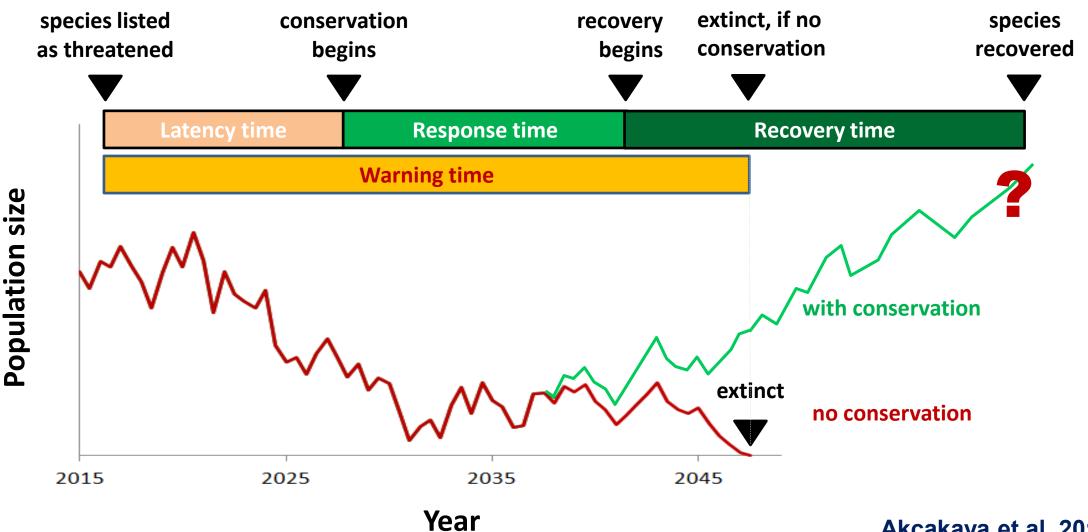


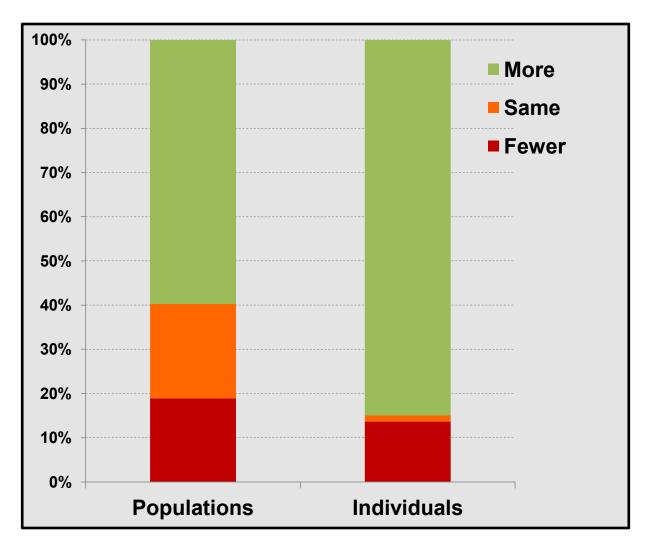
Not at risk of extinction, BUT safe only in a fraction of former range



Species with many extirpated and threatened populations, and a few populations with negligible risk of extinction

Not at risk of extinction, BUT "ecologically extinct"


Populations reduced to very low densities at which they do not fulfill their ecological functions ("functionally extinct")



American Bison: Status Survey and Conservation Guidelines 2010. IUCN.

Is avoiding extinction enough?

Setting Recovery Targets

A critical step of the conservation planning process.

Not standardized.

e.g., recovery targets for many ESA-listed species are at or below the current levels

Data source: Neel et al. 2012. BioScience

Recovery

- No objective, practical & ambitious definition of recovery applicable across taxonomic groups
- "Extinct" vs. "Recovered"
- Much conceptual confusion (e.g., "3Rs")

Concepts, methods and other terms related to recovery and population targets				
adaptability	ecological interactions	functional	PVA	
adaptable	ecological role	genetic diversity	redundancy	
adaptive response	ecologically self-	genetic robustness	reference conditions	
Allee effects	sustaining	healthy populations	replicated populations	
baseline	economic benefits	historical level	representative	
captive management	ecosystem	historical range	resilience	
connectivity	representation	intensive management	self-sustaining	
conservation dependent	ecosystem services	local adaptations	social dynamics	
demographic	environmental health	managed populations	species interactions	
sustainability	evolutionary potential	MVP	sustainable	
ecological function	extinction risk	pre-impact	threatened	
ecological integrity	fragmentation	pristine	viable	

Recovery

Three main dimensions

- Viability (persistence, resilience, etc.): low risk of extinction is the minimum requirement
- **Functionality**: role or function in the ecosystem
- Representation: occurring in a representative set of ecosystems throughout its native range

Defining the recovered state

A species is "fully recovered" if it is **viable**, and ecologically **functional**, in every **part** of its indigenous and projected **range**.

Akçakaya et al. 2018; Conservation Biology

Conservation Biology

Contributed Paper

Quantifying species recovery and conservation success to develop an IUCN Green List of Species

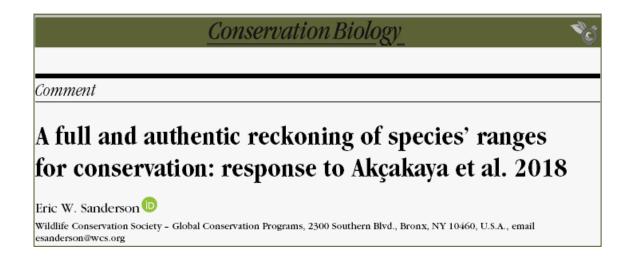
H. Resit Akçakaya D, 1,2 * Elizabeth L. Bennett, 3 Thomas M. Brooks, 4,5,6 Molly K. Grace, 7 Anna Heath, 8 Simon Hedges, 3,9 Craig Hilton-Taylor D, 10 Michael Hoffmann, 2,11 David A. Keith D, 2,12,13 Barney Long, 14 David P. Mallon, 15,16 Erik Meijaard, 17,18 E.J. Milner-Gulland, 19 Ana S.L. Rodrigues, 20 Jon Paul Rodriguez, 2,21 P.J. Stephenson, 4,22,23 Simon N. Stuart, 8,2 and Richard P. Young²⁴

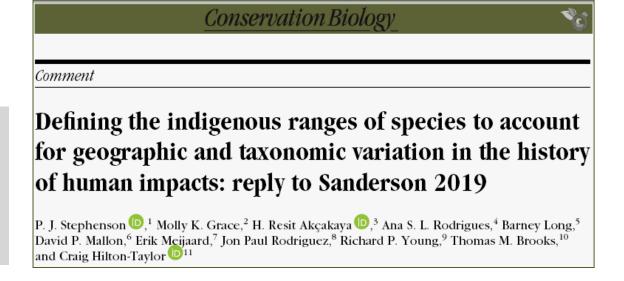
Representation: Range

Indigenous range: known or inferred distribution at a temporal benchmark

Projected range: areas expected to become suitable due to climate change

Representation: Range


Indigenous range: known or inferred distribution at a temporal benchmark


- Globally fixed? (e.g., 1750?)
- Regionally fixed?
- Species-specific?
- Region x Species?

Philosophical Transactions B. (in press) https://doi.org/10.1098/rstb.2019-0297

Using historical and palaeoecological data to inform ambitious species recovery targets

Molly Grace^{1*}, H. Resit Akçakaya^{2,3}, Elizabeth Bennett⁴, Craig Hilton-Taylor⁵, Barney Long⁶, E.J. Milner-Gulland¹, Richard Young⁷, Michael Hoffmann⁸

Defining the recovered state

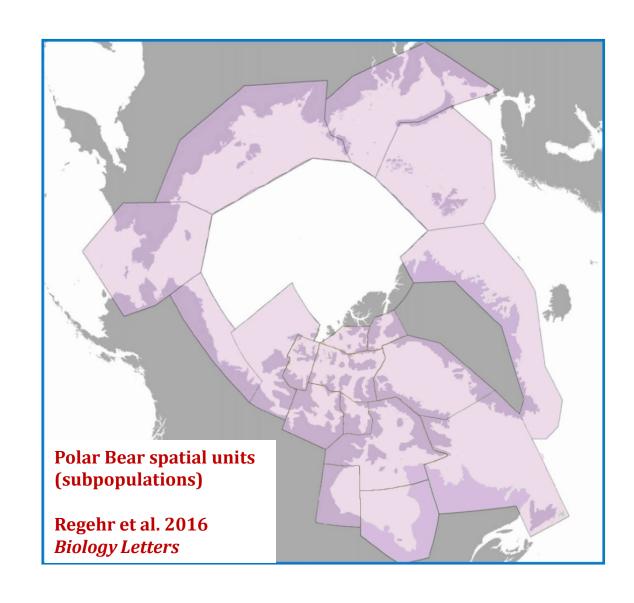
A species is "fully recovered" if it is **viable**, and ecologically **functional**, in every **part** of its indigenous and projected **range**.

Akçakaya et al. 2018; Conservation Biology

Conservation Biology

Contributed Paper

Quantifying species recovery and conservation success to develop an IUCN Green List of Species


H. Resit Akçakaya , 1,2* Elizabeth L. Bennett,3 Thomas M. Brooks,4,5,6 Molly K. Grace,7 Anna Heath,8 Simon Hedges,3,9 Craig Hilton-Taylor , 10 Michael Hoffmann,2,11 David A. Keith , 2,12,13 Barney Long, 14 David P. Mallon, 15,16 Erik Meijaard, 17,18 E.J. Milner-Gulland, 19 Ana S.L. Rodrigues, 20 Jon Paul Rodriguez, 2,21 P.J. Stephenson, 4,22,23 Simon N. Stuart, 8,2 and Richard P. Young²⁴

Representation: Parts of the Range

To represent the different **ecological settings, conditions, and contexts** that the species occurs in

Spatial units (subdivisions), based on

- Subpopulations, ESUs, DPSs, subspecies;
- Ecoregions, habitat types;
- Geographical features (lakes, watersheds, etc.) as proxies
- Locations (as defined in the Red List)

Defining the recovered state

A species is "fully recovered" if it is **viable**, and ecologically **functional**, in every **part** of its indigenous and projected **range**.

Akçakaya et al. 2018; Conservation Biology

Conservation Biology

Contributed Paper

Quantifying species recovery and conservation success to develop an IUCN Green List of Species

H. Resit Akçakaya , 1,2* Elizabeth L. Bennett,3 Thomas M. Brooks,4,5,6 Molly K. Grace,7 Anna Heath,8 Simon Hedges,3,9 Craig Hilton-Taylor , 10 Michael Hoffmann,2,11 David A. Keith , 2,12,13 Barney Long, 14 David P. Mallon, 15,16 Erik Meijaard, 17,18 E.J. Milner-Gulland, 19 Ana S.L. Rodrigues, 20 Jon Paul Rodriguez, 2,21 P.J. Stephenson,4,22,23 Simon N. Stuart,8,2 and Richard P. Young²⁴

Viability: Low Extinction Risk

- Persistence; Resilience; Demographic sustainability
- Attributes necessary for long-term persistence
 - Large
 - Stable
 - Replicated
 - Healthy
 - Genetically robust
 - Adaptive capacity

Viability: Low Extinction Risk

Practical definition of viability in each spatial unit:

LC or (NT and not declining)

according to IUCN Red List rules+ regional guidelines

incorporating rescue effects

Defining the recovered state

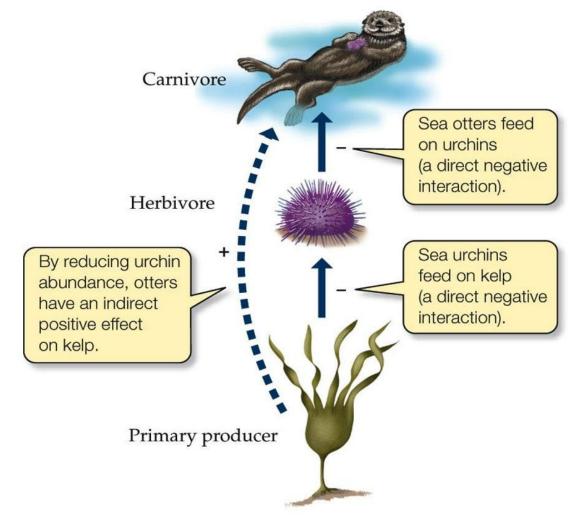
A species is "fully recovered" if it is **viable**, and ecologically **functional**, in every **part** of its indigenous and projected **range**.

Akçakaya et al. 2018; Conservation Biology

Conservation Biology

Contributed Paper

Quantifying species recovery and conservation success to develop an IUCN Green List of Species


H. Resit Akçakaya , 1,2* Elizabeth L. Bennett,3 Thomas M. Brooks,4,5,6 Molly K. Grace,7 Anna Heath,8 Simon Hedges,3,9 Craig Hilton-Taylor , 10 Michael Hoffmann,2,11 David A. Keith , 2,12,13 Barney Long, 14 David P. Mallon, 15,16 Erik Meijaard, 17,18 E.J. Milner-Gulland, 19 Ana S.L. Rodrigues, 20 Jon Paul Rodriguez, 2,21 P.J. Stephenson,4,22,23 Simon N. Stuart,8,2 and Richard P. Young²⁴

Functionality

"A fully recovered species exhibits the full range of its ecological interactions, functions, and other roles in the ecosystem"

Akçakaya et al. 2018; Conservation Biology

- Long history of considering function in conservation
- But no explicit and systematic use of ecological function as a criterion of species recovery

e.g., Estes & Palmisano 1974

Ecological Function of a Species

- The species' interactions with other species,
- Its influence on ecosystem processes,
- Intra-specific interactions, behavior and social dynamics that are characteristic of the species.

Carnivore Sea otters feed on urchins (a direct negative interaction). Herbivore Sea urchins By reducing urchin feed on kelp abundance, otters (a direct negative have an indirect interaction). positive effect on kelp. Primary producer

Akçakaya et al. in review

e.g., Estes & Palmisano 1974

Quantifying Recovery

In each "part" (spatial unit):

State	Description	Weight
Absent	does not occur in (but did or will)	0
Present	occurs, but not viable or functional	1
Viable	low risk of extirpation, but not functional	2
Functional	population size, density, structure allows ecological functions or roles	

Quantifying Recovery

The Green List Score (*G*)

$$G = \frac{\sum_{s} W_{s}}{W_{F} \times N} \times 100$$

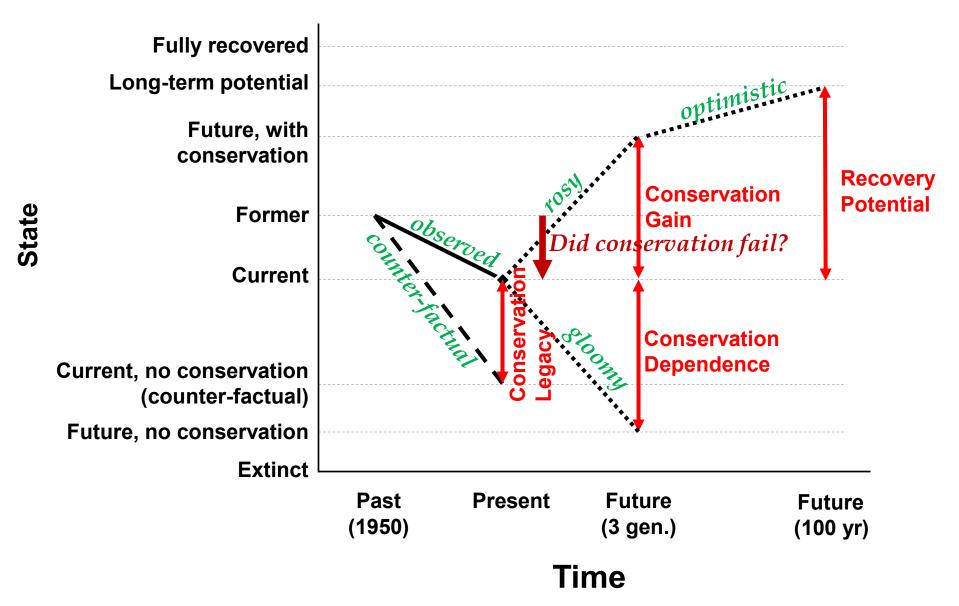
s: each spatial unit

 W_S : the weight of the state in the spatial unit W_F : the weight of the "Functional" category

N : the number of spatial units

State	Weight	
Absent	0	
Present	1	
Viable	2	
Functional	3	

Maximum score: 100, functional in all parts of range

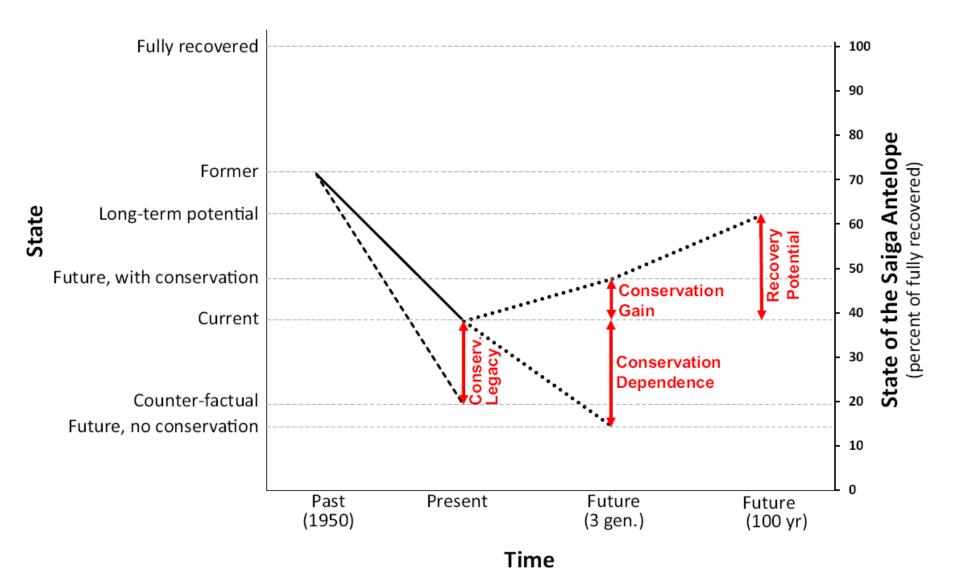

(Fully recovered)

Minimum score: 0, absent in all parts of the range

(Extinct)

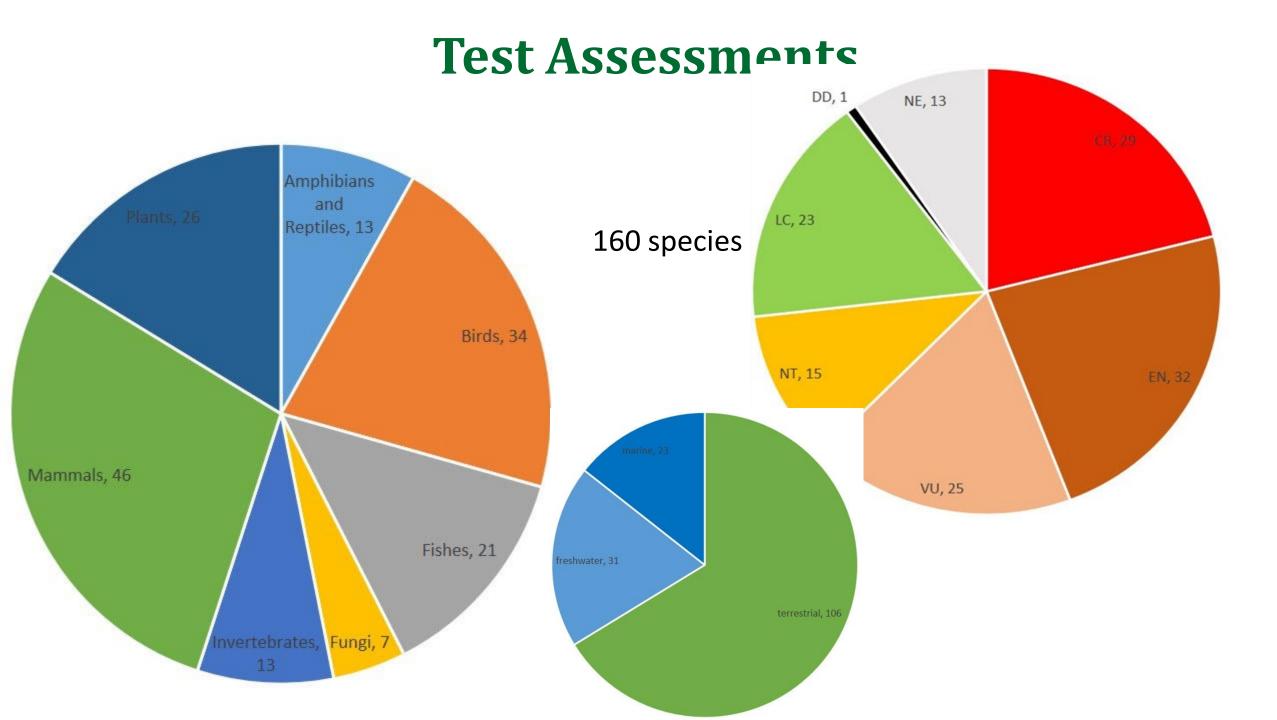
Akçakaya et al. 2018 *Conservation Biology*

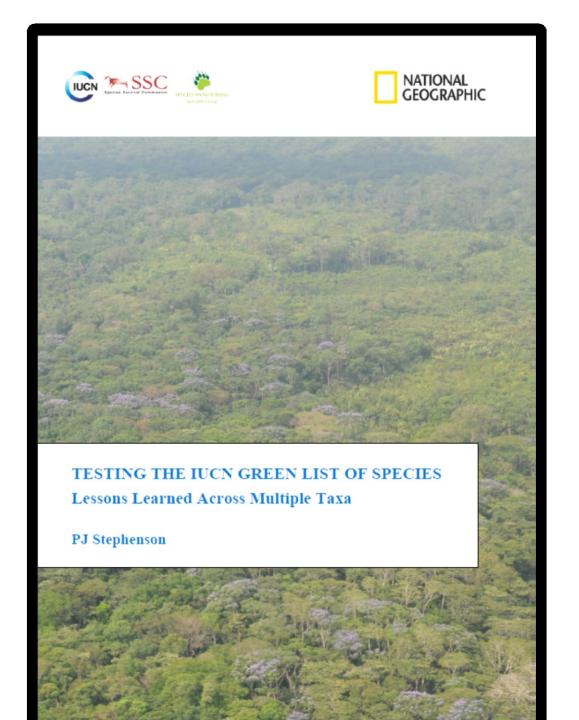
Quantifying Conservation Success


Quantifying Conservation Success

Present

Past


(1950)



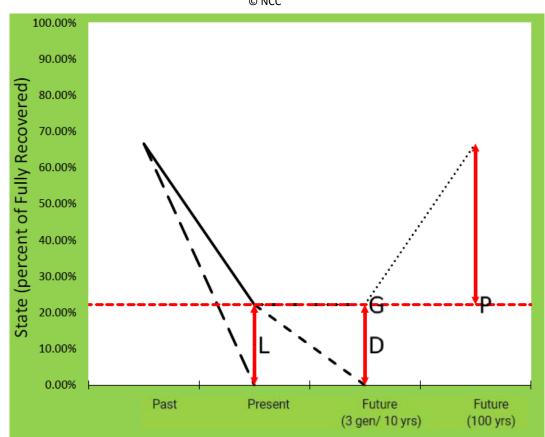
The IUCN Green List of Species

- Consists of the 4 conservation metrics:
 - Conservation Legacy
 - Conservation Dependence
 - Conservation Gain
 - Recovery Potential
- Can be applied to any species, regardless of
 - Red List status (EW to LC) or population trends (decline, increase)
 - Whether it was or will be subject to conservation measures

Stephenson, P.J. (2019). Testing the IUCN Green List of Species: Lessons Learned Across Multiple Taxa. IUCN SSC Species Monitoring Specialist Group, Gingins, Switzerland and National Geographic Society, Washington DC, USA.

Example: Powesheik skipperling

Red List: CR


Range: USA, Canada

- Conservation Legacy: numerically low, but important because extinction was prevented
- No Conservation Gain (in the next 10 years)
- But, Conservation Dependence very high: would go extinction without future conservation

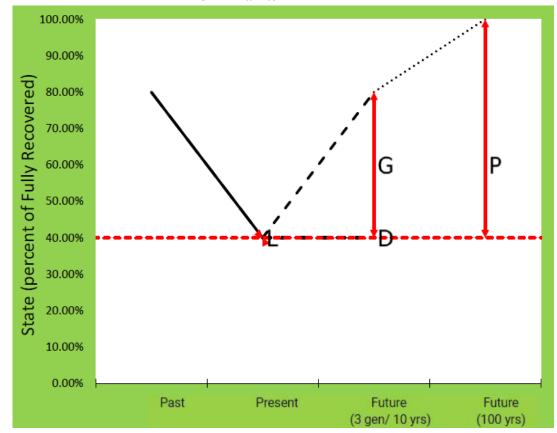
Source: Stephenson, P.J. (2019). *Testing the IUCN Green List of Species: Lessons Learned Across Multiple Taxa.*

Powesheik skipperling
Oarisma powesheik

Example: Estuarine pipefish

Red List: CR

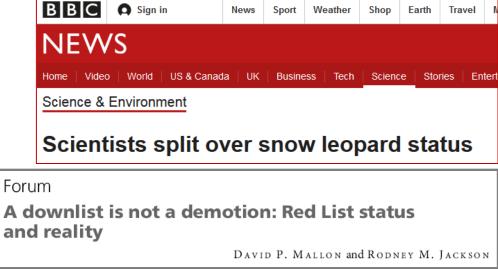
Range: South Africa


- Conservation Legacy = 0
 - past conservation did not make a difference
- Conservation Dependence = 0
 - not expected to decline significantly even if there is no conservation action
- But, Conservation Gain and Potential very high:
 - could recover to 100% (functional in all special units)

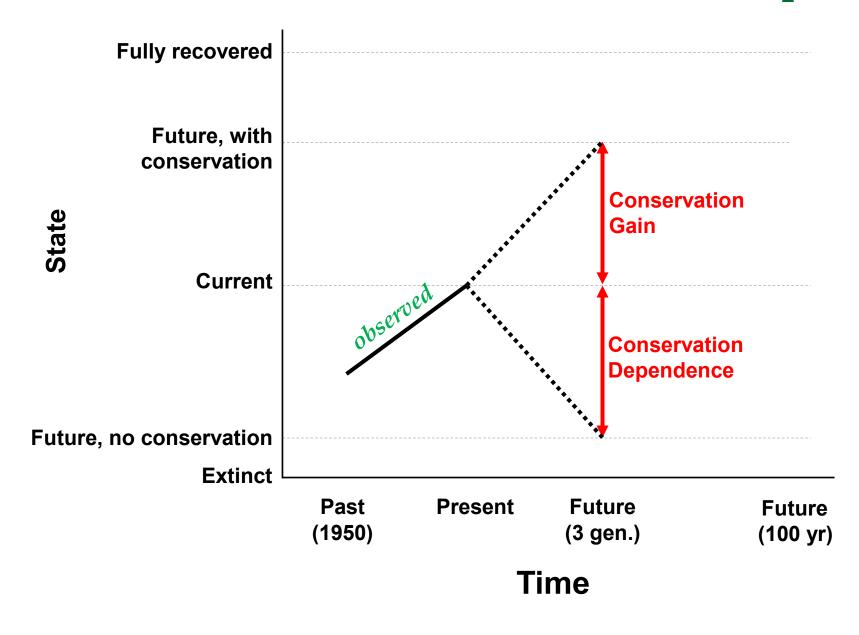
Source: Stephenson, P.J. (2019). *Testing the IUCN Green List of Species: Lessons Learned Across Multiple Taxa.*

Estuarine pipefish
Syngnathus watermeyeri

© www.iltaw.com

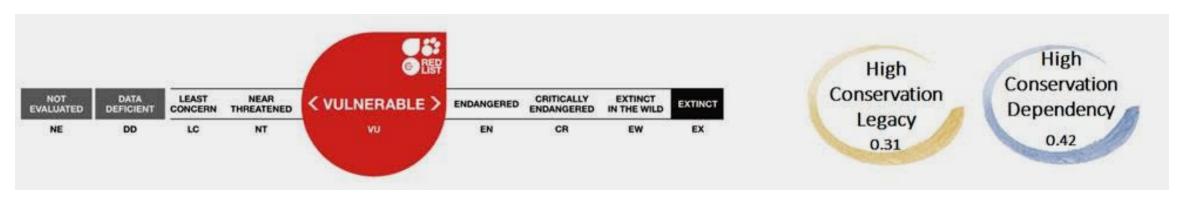

The IUCN Green List of Species

- Improvement in status: not a cause for cutting funding
- Conservation dependence (reliance) documented



The IUCN Green List of Species

The IUCN Green List of Species: Relation to the Conservation Planning Process


- Not replacing the CP process that brings stakeholders together
- Rather, reflecting the goals and aspirations set in that process
- Short-term targets and priorities (5-20 years) ⇒ Conservation Gain
- These are nested within a longer-term vision ⇒ **Recovery Potential**
- Built upon evaluation of past conservation ⇒ **Conservation Legacy**
- Necessity of continuing conservation ⇒ **Conservation Dependence**
- Degree of recovery ⇒ Green List score (Species Recovery Index)

The IUCN Green List of Species: Many Remaining Challenges

e.g.,

- Temporal benchmark(s) for indigenous range
- Methods for projected range
- Methods and proxies for determining functionality
- Methods for developing scenarios (counterfactual and future)
- Categorization of metrics (e.g., conservation-dependent)
- Communicating results (displaying metrics on iucnredlist.org)
- Large-scale testing

The IUCN Green List of Species: Key contributions to conservation science & practice

- Defining "fully recovered"
- Functionality: integrating species & ecosystem levels
- Representation: integrating population & species scales
- Encouraging ambitious and objective recovery goals
- Addressing perverse incentives (focus on RL status)
- Quantifying "conservation-dependent" (conservation-reliant)
- Recognizing and measuring conservation success (even when the species remains threatened)
- Promoting optimism

Acknowledgements

Partners & Funding

Green List of Species Task Force

Elizabeth Bennett, Co-Chair

H. Resit Akçakaya

Molly Grace, Coordinator

Simon Hedges

Mike Hoffmann

David Mallon

E.J. Milner-Gulland

Jon Paul Rodriguez

Simon Stuart

Barney Long, Co-Chair

Tom Brooks

Anna Heath

Craig Hilton-Taylor

David Keith

Erik Meijaard

Ana Rodrigues

Peter Stephenson

Richard Young